## **Research priorities in RHD**

#### Andrew Steer MBBS BMedSc MPH FRACP PhD

#### Centre for International Child Health University of Melbourne Melbourne, Australia











#### Alvan Feinstein 1926-2001

Founding editor, Journal of Clinical Epidemiology, 'The father of modern clinical epidemiology'

"Rheumatic fever has a complexity that makes it '**a university of** disease'. It inaugurated my instruction in clinical epidemiology and biostatistics... and it brought me my first academic adventures in controversy"" Rheumatic heart disease is a disease of poverty that affects 15 million people worldwide and causes at least 250,000 deaths per annum

#### Aims of this session

- 1. To outline research avenues in the RHD field
- 2. To consider what the research priorities are for RHD in the Pacific

(\*And give a little bit of extra information on GAS vaccines)

## Frameworks for thinking about RHD research

## 1. Models of research

- 1. Basic science / pre-clinical
- 2. Epidemiology and surveillance
- 3. Clinical research including clinical trials
- 4. Service, programmatic and social research
- 2. Urgent questions vs. questions of interest
- 3. The RHD pathogenesis & management model







#### What is optimal surgery for RHD valvular disease?

Answer: Prospective clinical studies of repair versus replacement

# How can RHD care be improved in the Pacific? (especially remote communities)

Answer: Service delivery research



#### **Established RHD**

#### What is the global prevalence of RHD?

Answer: Systematic review (GBD), newer studies

#### What is the rate of mortality in patients with RHD?

Answer: Dedicated mortality studies

#### What is the cost of RHD?

Answer: Systematic economic impact studies



#### **Prevention of RHD**

Are there new ways to deliver secondary prophylaxis? Answer: depot preparations of long-long acting BPG, BPG pumps

#### Is the quality of BPG adequate and uniform? Answer: Audits of BPG quality

# Are we successful in increasing adherence? What improves adherence?

Answer: RCT of adherence-enhancing measures

#### **Prevention of RHD: screening**

#### Can we identify people with RHD earlier?

Answer: RHD screening with echocardiography

# How do we determine what is normal/abnormal on echocardiogram?

Answer: Compare RHD endemic and non-endemic populations, long term follow up, case-control studies, RCT

# How should we manage patients with "borderline" RHD? (or even "mild" definite RHD)

Answer: Case-control study, RCT of penicillin prophylaxis

#### **Prevention of RHD: screening**

#### Is screening clinically effective?

Answer: Follow-up studies of outcomes (no control group)

#### Is screening for RHD cost-effective?

Answer: Detailed cost-effectiveness analysis

#### Can we create sustainable models for screening?

Answer: nurse-led echocardiography

#### Can we improve screening efficiency?

Answer: automated echo reading systems



#### **Management of ARF**

#### Is the clinical picture of ARF changing? Answer: Clinical surveillance studies of ARF

#### Are there better ways to diagnose ARF?

Answer: Better biomarkers

#### Are there better ways to manage ARF?

Answer:

- Clinical studies of naproxen
- Clinical studies of TNF-antagonists eg infliximab, etanercept
- Clinical studies on the management of specific disease manifestations – eg chorea, arthritis



Primary prevention of ARF: sore throat

Are antibiotics other than penicillin effective in the prevention of ARF?

Is a comprehensive school-based program of sore throat surveillance and treatment effective in reducing rates of ARF?

What are the best ways to increase awareness of ARF in the community?

Answer: Health promotion research

What is the role of rapid tests in the diagnosis of GAS pharyngitis?

Answer: Diagnostic accuracy studies

#### **Primary prevention of ARF: skin sores**

#### Does control of GAS skin sores lead to a reduction in ARF?

Answer: Difficult. Large studies required: epidemiologic or intervention

#### **Primary prevention of ARF: a vaccine**

A work still in progress...

There are 2 vaccines approaching phase 1 trials:





## **Key questions:**

What are the circulating strains of GAS in the Pacific? What is the incidence of potential outcome measures:

- ARF
- Acute post-streptococcal glomerulonephritis
- Pharyngitis
- GAS impetigo

Answer: Detailed epidemiologic studies



**Pathogenesis of rheumatic fever** 

Another work in progress...



**Pathogenesis of rheumatic fever** 

#### What is the role of skin infections?

Answer: Epidemiologic studies, intervention studies, basic science approach (homing T-cell studies)

#### What is the immune mechanism of ARF?

Answer: Animal model of ARF, applying novel technologies to the disease model (proteomics etc.)



#### **Social determinants of ARF**

#### What makes particular populations susceptible to ARF and RHD? What can be done about these social determinants?

Answer:

- Case-control studies (Leon Gordis)
- Intervention studies (eg healthy housing, impact of social welfare programs on ARF incidence)

| Measures of status                       | Cases $(n = 80)$ | Controls $(n = 80)$ | Statistical test <sup>a</sup>   |
|------------------------------------------|------------------|---------------------|---------------------------------|
| Usual mode of transport                  | (%)              |                     |                                 |
| No car                                   | 72 (90)          | 65 (81)             | OR 2.5 (95% CI<br>0.96–6.6)     |
| Car                                      | 8 (10)           | 15 (19)             |                                 |
| Employed in household (                  | %)               |                     |                                 |
| $\leq 1$                                 | 57 (71)          | 51 (64)             | OR 1.5 (95% CI<br>0.8–3.0)      |
| >1                                       | 23 (29)          | 29 (36)             |                                 |
| Maternal education                       |                  |                     |                                 |
| Primary school                           | 27 (34)          | 17 (21)             | <u>OR 2.0</u> (95% CI 0.95–4.0) |
| Secondary school                         | 52 (66)          | 62 (79)             |                                 |
| Maternal employment                      |                  |                     |                                 |
| Not employed                             | 65 (85)          | 53 (66)             | OR 2.6 (95% CI<br>1.2–5.8)      |
| Employed                                 | 12 (15)          | 23 (34)             |                                 |
| Paternal employment                      |                  |                     |                                 |
| Not employed                             | 48 (60)          | 47 (62)             | OR 1.1 (95% CI<br>0.5–2.1)      |
| Employed                                 | 32 (40)          | 29 (38)             |                                 |
| Mean income household<br>in dollars (SD) | 137 (138)        | 152 (161)           | p = 0.22                        |

Dobson et al *Pediatr Cardiol* 2011

OR odds ratio, CI confidence interval



# What makes specific people (and populations) particularly susceptible to ARF?

Answer: Novel genetic studies (incl whole genome sequencing)

# Of all these questions, what are the priority questions for the Pacific?



## **1. Implementation research**

- Delivery of RHD care
- Improving secondary prophylaxis adherence
- Primary prevention (incl. rapid tests)

## 2. Screening research

- Standard case definitions with careful follow-up
- Effectiveness of screening
- Cost-effectiveness
- Borderline cases...



#### **Borderline cases...**



## A clinical question

#### Gavin Wheaton, Bangkok, March 2011:

These mild abnormal findings in asymptomatic children...

"Truly a high prevalence of valve abnormalities which are normal and not previously described,

#### versus

Truly valve abnormalities that are not normal and represent early RHD"


This is a question that requires an URGENT answer if screening is to continue to be conducted

## How to answer this question

- 1) Previous data
- 2) Observational study:
- Simply observe these cases over time off prophylaxis
- 3) Case control study

4) RCT of secondary prophylaxis for borderline cases

## Design of a RCT Defining the question...

"In otherwise well children aged 5-15 years with a diagnosis of borderline RHD on echocardiogram, does IM injection of BPG every 28 days reduce the risk of acute rheumatic fever and progression of RHD compared to a control group over a period of 3 years."

## Sample size (RHD outcome measure)

Iceberg simulator RCT sample size calculator

#### Assumptions:

1 year follow-up CER (RHD progression) = 10% per year RRR = 50% IER = 5% per year Power 80%, alpha 0.05 Loss to follow-up: 10% Compliance: 80% Treatment 100% effective

#### Sample size:

430 in each group

- ightarrow 150 if observed for 3 years
- ightarrow 200 if LTFU 10% per annum
- $\rightarrow$  Compliance...

### 3. Susceptibility:

- Is it environment?
- Is it genetics

#### 4. Vaccine trials and vaccine epidemiology

- Molecular epidemiology
- Baseline disease epiemiology

## Studies underway by our group

Fiji:Nurse led echocardiography<br/>Economic analysis\*<br/>Genetics of RHD\*<br/>Immunopathogenesis of ARF<br/>Control of skin sores ("RCT")<br/>RHD surgery mortality auditAustralia:gECHO

RhFFUS Genetics of RHD RCT for secondary prevention

International: RHD echocardiographic standardisation



#### Population-based echocardiographic screening for Rheumatic Heart Disease in northern Australian children

(1) The gECHO study







## Methods



| ervational cross-sectional prevalence survey                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                      |
| 0 children aged 5-15 in northern Australia                                                                                                           |
| 0 urban (Darwin and Cairns), 4000 remote<br>0 remote Top End<br>0 remote Central Australia<br>0 remote Far North Queensland<br>0 remote Kimberly, WA |
| culated based on estimated point prevalence of RHD<br>/1,000 children aged 5-14*<br>nple size of 4000 gives 95% CI of 5.1-10.7/1000                  |
|                                                                                                                                                      |

\*Known prevalence of RHD in Central Australia in 2002 according to NT RHD register data

## Methods



#### Screening echocardiogram

- All children (n=5255)
- Abbreviated protocol focusing on MV and AV
- Defined criteria to prompt comprehensive echocardiogram (n=690)
- All comp echos to be reported by service-delivery cardiologist for the region ASAP

## Echos performed



|        | Location | Screens | Comps | (%) |
|--------|----------|---------|-------|-----|
| Urban  | Darwin   | 591     | 63    | 11  |
|        | Cairns   | 497     | 44    | 9   |
|        | Total    | 1088    | 107   | 10  |
| Remote | Top End  | 1015    | 153   | 15  |
|        | CA       | 974     | 111   | 11  |
|        | FNQ      | 1355    | 228   | 17  |
|        | WA       | 823     | 91    | 11  |
|        | Total    | 4167    | 583   | 14  |
| Total  |          | 5255    | 690   | 13% |

## gECHO



- Echos now all read
- Urban (low risk) dataset analysis complete and presented in Bangkok
- Remote (high risk) dataset analysis near completion
- In 2012:
  - Publication of results
  - Economic analysis
  - Recommendations for screening in Australia

## (2) RhFFUS





## **RhFFUS**

## <u>Rh</u>eumatic <u>F</u>ever <u>Follow Up</u> <u>S</u>tudy

Is that echo' normal or not?

## RhFFUS



- Follow up of "borderline" cases from gECHO
- Endpoints:
  - Incidence of ARF
  - Progression of RHD
- In NT, WA, Qld
- Due to start in early 2012

# (3) Genetics of RHD in Australian Indigenous population



- Main aim to identify any genetic associations with RHD susceptibility, with a view to unlocking the "Black Box" of ARF pathogenesis
- 500 Indigenous RHD patients, with 1000 healthy controls matched by age and community.
- Currently planning "Immunochip" may end up doing GWAS if funding adequate.
- Major component looking at informed consent, and governance of samples and information
- First part has begun. NHMRC funding obtained to start in 2012.

## Advantages of RHD research

Answer important questions

Provide valuable data to government for informed decision making

- Advocacy for RHD (data talks)
- Awareness and government buy-in
- Establishment of networks
- Centre of Excellence

#### Merci beaucoup pour votre attention.



### **GAS vaccines**

#### **Human GAS immunisation**

| Year of publication | Antigen                                                            |
|---------------------|--------------------------------------------------------------------|
| 1923                | 21 strain heat-killed GAS                                          |
| 1930                | Heat-killed GAS                                                    |
| 1931                | Heat-killed GAS                                                    |
| 1932                | Heat-killed GAS                                                    |
| 1933-1943           | GAS 'toxin' and GAS tannic acid precipitated 'toxin'               |
| 1937–1941           | GAS tannic acid precipitated 'toxin'                               |
| 1946                | Heat-killed or ultraviolet-inactivated M17 and M19 GAS             |
| 1949                | Heat-killed M3 and M17 GAS                                         |
| 1960                | Partially purified M19 GAS                                         |
| 1962                | Cell wall of M5 and M12 GAS                                        |
| 1963                | Cell wall of M14 GAS                                               |
| 1968                | Partially purified M protein M3 GAS                                |
| 1969                | Highly purified M protein M12 GAS                                  |
| 1973                | Highly purified M protein M1 GAS                                   |
| 1975                | Highly purified M protein M1 GAS                                   |
| 1978                | Highly purified M protein M3 and M12 GAS                           |
| 1979                | Polypeptide fragment M protein M24 GAS                             |
| 2004                | Six-valent N-terminal M protein fragments M1, M3, M5, M6, M19, M24 |
| 2005                | Recombinant 26-valent M protein vaccine along with Spa             |

#### Vaccine targets





## *emm*-type specific vaccines

## Safety and Immunogenicity of 26-Valent Group A *Streptococcus* Vaccine in Healthy Adult Volunteers

Shelly A. McNeil,<sup>1</sup> Scott A. Halperin,<sup>1</sup> Joanne M. Langley,<sup>1</sup> Bruce Smith,<sup>1</sup> Andrew Warren,<sup>2</sup> Geoffrey P. Sharratt,<sup>2</sup> Darlene M. Baxendale,<sup>1</sup> Mark A. Reddish,<sup>3</sup> Mary C. Hu,<sup>3</sup> Steven D. Stroop,<sup>3</sup> Janine Linden,<sup>3</sup> Louis F. Fries,<sup>3</sup> Peter E. Vink,<sup>3</sup> and James B. Dale<sup>4</sup>



#### **Choice of** *emm* **types**

26 *emm* types chosen from >150 known *emm* types:

Most common *emm* types assoc. with ARF
Most common *emm* types causing invasive GAS
Most common *emm* types causing pharyngitis

(In the USA and Canada)

#### The Epidemiology of Invasive Group A Streptococcal Infection and Potential Vaccine Implications: United States, 2000–2004

Rosalyn E. O'Loughlin,<sup>1,2</sup> Angela Roberson,<sup>1</sup> Paul R. Cieslak,<sup>5</sup> Ruth Lynfield,<sup>6</sup> Ken Gershman,<sup>7</sup> Allen Craig,<sup>8</sup> Bernadette A. Albanese,<sup>9</sup> Monica M. Farley,<sup>3,4</sup> Nancy L. Barrett,<sup>10</sup> Nancy L. Spina,<sup>11</sup> Bernard Beall,<sup>1</sup> Lee H. Harrison,<sup>12</sup> Arthur Reingold,<sup>13</sup> and Chris Van Beneden,<sup>1</sup> for the Active Bacterial Core Surveillance Team

The *emm* types in a proposed 26-valent vaccine accounted for 79% of all cases and deaths.

What about *emm* types in Australia and the Pacific where the burden of disease is greatest?

# Global *emm* type distribution of group A streptococci: systematic review and implications for vaccine development

Andrew C Steer, Irwin Law, Laisiana Matatolu, Bernard W Beall, Jonathan R Carapetis

Lancet Infect Dis 2009; 9: 611-16

#### Methods:

- Systematic review
- 1990 March 2009
- 102 datasets
- Presented data as:
  - *emm* as % of total isolates
  - By region
  - By disease type (invasive, pharyngeal, skin)



Established market economies



Pacific region

#### 26 valent vaccine - coverage (%)



A good vaccine for temperate countries where pharyngitis is a priority. A poor vaccine for tropical where disease burden is greatest.

http://www.cdc.gov/ncidod/biotech/strep/emmtype\_proportions.htm

### 26 valent M type vaccine coverage in Fiji



#### **Other vaccine candidates**



#### New vaccine candidates

#### **Conserved M protein vaccines**

- The "J8" vaccine

#### Non M protein vaccines

- C35a peptidase
- GAS carbohydrate
- Fibronectin binding proteins
- Cysteine protease
- Streptococcal pili
- Genomic and proteomic "fishing" for vaccines



#### J8

#### Courtesy Professor Michael Good, QIMR

#### Is J8 conserved across GAS isolates?

Results – J14.0\* and J14.1 typing in Fiji



\*GAS that express J14.0 and J14.1 are protected by antibodies produced against J8 Therefore a J8 vaccine could theoretically protect against <u>93.8%</u> of isolates in Fiji

Steer et al. J Clin Microbiol 2009

### 1. More to the type specific story...

Could antibodies to some M proteins be cross-protective?

NO for main M proteins in USA (emm 1,3,6,12,28)

**BUT** other M proteins...



\*All emm types in one cluster may be cross-protected...






## **M protein Global survey**